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NON-LINEARLY ELASTIC MATERIALS}
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The low-stress regions, o the points of which zero stressed states at the edges of the contact surfaces correspond, are constructed
in the space of physical and geometrical parameters of a piecewise homogeneous wedge of non-linear elastic materials. When
these parameters are specified, one can judge the strength of the joint from these zones. If the values of only some of the parameters
are known, the remaining parameters when the edges are being designed can be chosen so that the conditions for low stresses
are satisfied. In particular, a three-dimensional low-stress region is constructed when the wedge is made of three materials which
are strengthened in accordance with a power law. © 2000 Elsevier Science Ltd. All rights reserved.

The case of linearly elastic wedges made of two materials was considered in [1], and for materials with
power-law strengthening in [2, 3].

1. THE GENERAL CASE

We will investigate the stressed state for an arbitrary shear in the neighbourhood of a corner point of
a piecewise homogeneous solid, made of n wedge-shaped prisms, the materials of which are strengthened
in accordance with the power law

n

G = keg

where o and gg are the stress and strain intensities, the parameter m is assumed to be the same for all
the materials, while the strain modulus & is assumed to be different. The angles at the vertices of the
wedge components will be denoted by «;, while the strain moduli of the materials will be denoted by
k;, respectively, where i = 1,2, ..., n (Fig. 1). Quantities in the ranges A;_; < 8 < A4;, where 4; = q;
+a; +... + a; Ay = 0, will be given the subscripts i.

The stresses and displacements in these ranges will be sought in the form

T, = Mi(l-l)mfix'_‘ 1, = kir(l—l)mfiki
(1.1)

wi=rt i, x =N i= 12,00

The system of functions f; = f,(8, \) defines the eigenfunction, while \ is the eigenvalue of the problem
in question. Substituting the stress components from (1.1) into the third equilibrium equation, we arrive
at a second-order ordinary differential equation if f;

(f) +nfix; =0, n=A1+A-m] (1.2)
For boundary conditions of the first kind we have
FO) = £(A)=0 (1.3)
On the contact surfaces
fi=Ffie f%i=8fiXiss when 6=A4; 14)
8 =k ylk, i=12,..,n-1
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Introducing the new function (8, \)

= fiv; (1.5)

from (1.2) we obtain a first-order differential equation
/R 5 (U a0 S TP P N § L6
vi= v o

The conditions on the contact surfaces, by (1.3), will be
pi(u;2+)"2)(m—l)/2 “5,~V,'(V,'2 +}‘2)(m—-|)/2 =0, i=h2,...,n—1 (17)
Hi=yi(AL A vi=yi (A, A

We will assume that the displacement changes sign inside the range of one of the intermediate wedges
(i = j). The boundary conditions for Eq.(1.6) will then be

\VI(O)=\V;1(AM)=0 (18)

We will represent the general solution of Eq.(1.6) in the following form
Fly))=H;-8, i#j. i=12,...n j#l, j#n (1.9)
F(y;)=H;—8 when A, SO<E,
F(y;;)=%; -0 when §; <8< A,

x 1-2 X 1 I-A
F(x)=arctgi—+ " arctg:u—, §-7=Hj+?z_A’ A=n(|+—(—n—)

Here H; and H; are arbitrary constants, and we have also used passages to the limit from the right
and left to the point 8 = & Introducing the new unknown constants ¢ = H; — A4;_,, where ¢; = 0,
¢, = o,, we obtain

Fiu)=¢,—a;, i=L2,...,n=1 i#j (1.10)
Fup)=¢;-o;+A F(v)=0¢;, i=12,....n-1 (1.11)

Using the last equation and eliminating ¢; in the first equation of (1.10) and (1.11), we arrive at the
following system
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Fp) =-a
FOvi) - F(u) =0 %) i=12....n—1 (112)
Fvi)-F)=a,—A. F(v, )=0,

Equations (1.12), together with (1.7), constitute a system of 2z — 1 equations with 27 — 1 unknown
constants g, B, -+ ., Bn—1; V1, V2, -+ -, Vo—1; A Which enable one, in principle, for specified values of the
parameters, to determine the eigenvalue

A=Aoy. 0y, 005 8,,8,....,8

w15 M)

If the point § lies inside the range of the n-th wedge, i.e.j = n, then, taking w; = p,, = 0 in the first
equation of (1.11) we determine ¢, = o, — A. The first two equations of system (1.12) remain unchanged,
the last equation is removed, and the penultimate equation takes the form

F(vn-l )= a, - A

In the last three equations of (1.9) we must take H; = ¢, + A4,_;.
Determination of the function f;, We introduce the following notation

Y. (x, xy)= ] W0

Y
Integrating Eqs (1.5) and using the conditions for the function f; on the contact surfaces, we obtain
£ = 10)expl¥ (0, A+, (AL A+ +Wi(A;, 8)], I1SiSj~1
fi= LA exp(=¥, (0, A) =Y, (A, A= -, (A, A)), j+1<i<n (1.13)
For the j-th wedge we will have

fin = AMexpl'Fi (0, A+ (A, A+ +¥;(4_, 0)], A <0<E;

Aj-r s

fin = (A expl=Y (8, AW, (A, AL ) - =P (A, AL £;<0<4;, (114)

If the point § lies in one of the outermost wedges, for example, in the n-th wedge, the first equations
in (1.13) and (1.14) are retained; when j = n the second equation of (1.13) loses its meaning , and instead
of the second equation of (1.14) we will have

fnZ = .f;12(An )exp[’\*’n? (9' An)j (115)

Hence, the system of functions f; is determined, apart from two unknown constants f;(0) and f,,(4,,).
One of these can be eliminated by using the obvious matching condition f/;(§) = jf,-’z(g ). To obtain these
derivatives, Eq. (1.2) is integrated term by term with respect to 6 with i = j, imtial,ly from A4;_; with
respect to § and then from §; with respect to A;. Further, representing the expressions for fj; and f,
from (1.14) in the form of the product of a constant and an exponential function, and then substituting
them into the above matching condition, we obtain

LAY ==£(0)exp[¥ (0. A))-'¥, (4, A )+ + W (A, A+
' ‘ (1.16)
WA A+ 004,00 A+ o+, (A, ADKT; 1T,

where
&
T, = -—(‘i‘_,-,le)Aj_l +M [ Njexplm¥; (A, 6)]d0
|
Aj
T =(¥jaNp)a, + [ Nppexpl-m¥jy(8, A))1dS, N = (g5 + 272

!
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When j = n, instead of (1.16) we will have
f;ﬂ(An) = —fi (O)exp[‘{‘l (0’ AI ) + \PZ (AI ’ A2)+ -t \Pn—l (AH—Z’ An—l )]

A uniform wedge. If the component wedges are made of the same material, i.e. §; = 1, we take
w; = v; in Egs (1.7). From (1.10) and (1.11) we have the relation

Qi =@ -0, i#j, i=1,2,...,n-1 (1.17)
Qi =¢;—0;+A (1.18)

From (1.13), by specifying the valuesi = 1,2, ... j — 1 in succession, we obtain ¢; = ~4,_,. Further,
takingi =n-1,n-2,...j + 1 in succession, from (1.17) we obtain ¢;; = 4, — Aj. Substituting these
expressions into (1.18) and introducing the notation 4, = 2ms, we obtain A — 1 = (1-2s5)w. For a
semi-infinite slit, i.e. for s = 1, we have A — 1 = —p/(p+1). This result was first obtained for plane
deformation by other methods in [4, 5]. In the case considered, for an arbitrary angle, we obtain

(Fig. 2)

A< 2*p-Da —25)2 + (1= 250 (p - D2(1 - 25)2 +4p
8s(1—s)

(1.19)

The formula obtained can also be used in the case of clamped edges by replacing s by 5/2, and in the
case of mixed conditions, by replacing s here by 2s [9].
Note that singular stresses at singular points of linearly elastic plane and three-dimensional solids

were investigated in [6-8].
The hypersurface of finite stresses. Assuming A = 1 in (1.10) — (1.13), defining

W, =tgle, —0o;), Vv, =tg@,,,, i=12,..,n-1
and substituting these expressions into Eq. (1.7), we arrive at a system of n — 1 equations
Il—m

tgler; — ;)| cos(a; —9;) '™ +8;189,,; |cosg,,, [™"=0 (1.20)

containing n — 2 unknown constants ¢;, ¢s, ..., ¢, ;. After eliminating these parameters, we arrive,
in principle, at the equation of hypersurface of finite stresses in the 2n space of the parameters

g, 0, ..., O, 81, 82, ey 8,,_1; m.

A1
7

10

Fig. 2
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Linearly elastic materials. Taking m = 1 in (1.9), we obtain

v, =AighH,-0), i=12,..,n-1

Further, defining
W, = AtgAQ; — o), Vv, =AtgAQ,,,

and substituting these expressions into Eq. (1.7) with m = 1, we obtain

tg Mo, — @)+, tgAp,,, =0, i=12,...,n~I (1.21)
This is a system of n — 1 transcendental equations with » — 1 unknown constants ¢, @3, ... , ®,_1, .
After eliminating the parameters ¢; we obtain an equation in A = May, 0, ... , &t 81, 83, ... , 8py).

2. THE CASE n = 2

We introduce the notation a; = a, oy, = B. In this case, assuming n = j = 2, we obtain from (1.9)
Fly,)=-8, 0<6<a
Fly,)=a+B-A-0, a<B8<E 21
Fyp)=a+B-0, £<6<0+B, E=oa+pf-1/2A

Further, from (1.10) and (1.11), taking p, = 0 and putting ., = p. and v; = v, we obtain the equations
Fiwy=-o, F(V)=B-A (2.2)

which, together with the equation
p(u? +A2)mNI2 _gy(y? 4 a2z g (2.3)

comprise a system of equations which define the eigenvalue A = (o, B, 8, m). In apf\ space it defines
a family of surfaces which depend on the parameters 8 and m. This surface is represented in Fig. 3 for
d=2andp = 3.

In the limiting case when £ — a, i.e. when p — —, v > —oo, it follows from (2.2) and (2.3) that




430 M. A. Zadoyan

T 1-A
o= =E(I+—m) (24)

This means that in this case the piecewise homogeneous wedge behaves as a uniform solid. When
a = 7s, Eq. (2.4) reduces to (1.19).
For a linearly elastic material (2 = 1) it follows from system of equations (2.2) — (2.4) that

A=7/a) when a=8
o o, Py=tgha+dtgAB=0 when o= (2.5)

For specified values of 8 we will consider A in (2.5) as an implicit function of a and B. Further, we
have

dh = Agdoc+ Aydp

where the primes denote partial derivatives. When o = B we have A, =\, = —m/(20?) < 0, and when
a # (3 we obtain from (2.5)

A

—_—<0,
Icos’ M8

l;=—¢:x/(p;\=—m<0. lé=—mé/¢i=—

__« op
cos’ Ao cos® AB

This implies that dh < 0, i.e. when a increases, when B = const, or when B increases, when a = const,
or when o and B increase simultaneously, A decreases monotonically.

Taking A = 1, from (2.2) and (2.3) we arrive at the equation of the hypersurface of finite
stresses [2]

tgocfcosot | ™ +8tgB|cosB| =0 (2.6)

This surface is a trace in the o8 coordinate plane (Fig. 4). This is family of limiting curves of finite
stresses separating the low-stress zones from the zones of intense stress concentration.
Taking n = j = 2, we obtain from the first equations of (1.13) and (1.14), and also from (1.15)

x/2
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1, =Qexp¥,(0, 8), f; =Qexp[¥,(0, a)+'¥, (a. 6)]
fro ==Qexp[¥)(0, a)—¥5(6, a+P)(Ty/Tp)", @=£(0)

The expression for f,, refines the corresponding formula in [2, 9].

3. THE CASE r = 3

We will introduce the notation a; = a, ay = B, a3 = y (Fig. 5). We will assume that the displacement
changes sign in the range corresponding to the central wedge, i.e.j = 2. Putting ¢, = ¢, we obtain from
Egs (1.10) and (1.11)

Flu)=-o, F(v|)=¢

(3.1)
Fu)=9-B+A, F(vy)=7v
These equation, together with the equations
l»l,(}»l,z +x2)(m—|)12 —S,V,(V,Z +)~2)(m—l)l2 =0’ i= l, 2 (3.2)

which follow from (1.7), constitute a system of six equations in the unknown constants ;, ps, vy, v,
¢, \,which define the eigenvalue

A=A, B, Y, 8, 8;.m)
For a uniform wedge, taking 8; = 8, = 1 and p; = v;, from (3.1) and (3.2) we obtain the equation
a+B+y=A
which also leads to formula (1.19).

The hypersurface of finite stresses. When A = 1, finding p; and v; from (3.1) and substituting into
(3.2), while taking i = 1 and i = 2 from (1.20), we arrive at the following equations

tgofcosa™" +8,tgo|cos@| =0
| (3.3)

tg(B - @)l cos(B- )™ +8, tgy|cosy["=0

which contain the unknown parameter, ¢. In af+y three-dimensional coordinate space this system of
equations, for specified values of the parameters §,, 8, and m, defines the limiting surface of finite stresses
(Fig. 6). This surface cuts off, from the coordinate axes, sections equal to , and leaves traces on the
coordinate planes.
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The limiting surface (3.3) separates a three-dimensional low-stress region (below the surface) from
the region of intense stress concentration (above the surface). In other words, the low-stress region for
the edge of the contact surfaces of the composite wedge in question will be a three-dimensional region,
bounded by surface (3.3) and the coordinate planes containing the origin of coordinates.

We can determine the traces of the limiting surface on the coordinate planes. Assuming vy = 0, from
the second equation of (3.3) we obtain ¢ = B + g, where g is an integer. Substituting the value of ¢
into the first equation, we obtain

tgotfcosa| ™™ +8; tgB|cosBl™=0

This equatlon defines a family of limiting curves — the traces of surface (3.3) in the af plane. Assuming
B = 0in (3.3) and eliminating the expressions tg ¢ |cos ¢ |'™, we arrive at the equation

tgajcosal™™ +8,8,tgy|cosy|"=0

which defines the traces of the surface (3.3) in the oy plane. Further, assuming o = 0, from the first
equation of (3.3) we obtain ¢ = mrg. Then, the second equation is converted to the form

tgBlcosB|' ™" +8,tgylcosy| "=

it represents the traces of the limiting surface in the B+ plane.

For a uniform wedge, i.e. when 3; = 8; = 1, system of equations (3.3) is satisfied if we put a = —¢
+ mgiand B — ¢ = —y + wg,, where g, are integers. Eliminating ¢, we arrive at the equation of the
plane

a+B+y=mn (3.4)

equally inclined to the coordinate axes and cutting out from the latter sections equal to . When the
plane (3.4) intersects the hypersurface (3.3), three-dimensional regions are separated, to the points of
which there correspond low-stress states if the common aperture angle of the wedge a + B + v < m,
and also regions to the points of which there correspond intense stress concentrations, if
at+tB+vy>m

The traces of the surface (3.3) in planes parallel to the coordinate planes are also characteristic limiting
curves. Thus, assuming y = /2, we conclude from the second equation of (3.3) that B — ¢ = —7/2.
Further, noting that o and B vary in the square 0 < o, B < 7/2, we obtain from the first equation

sinocsin® -8, cosPcos” a=0

This equation defines the limiting curves in the y = «/2 plane. When 8; = 1 the limiting line becomes
the straight line a + B = w/2. For m = 1, this is obvious, and for m < 1 it is confirmed by a check.

Assuming o = 7/2 in the first equation of (3.3), we determine ¢ = — /2. Taking into account the
fact that 0 < B, v < w//2, we obtain the equation

cosPcos™ y—8,sinysin”"B=0

which defines the traces of the limiting surface in the o = /2 plane. When 8, = 1, this limiting line
becomes the straight line § + v = w/2.

Finally, assuming B = w/2 in the second equation of (3.3), taking into account the fact that
0 < o, vy < 7/2, and eliminating tg ¢. we have

. . 1K E—nt)
8, sino.  siny
8, cos" o cos™y

sin 2(‘p = _ZE.cm' gm = (

Further, evaluating tg ¢|cos ¢ |, from the first equation of system (3.3) we obtain, after reduction,
the equation

5 | (I=m=YN2m)

. Y | m 2 -

sinotsin IHY_S”’" cos Y cOs 0{5+ i m) =0
2
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which defines the traces of the surface (3.3) in the B = w/2 plane. Whenm = 1 it is simplified considerably
and becomes

sinosiny = (8, /8, )cosacosy =0

When 8; = 8, the limiting line considered becomes the straight line o + § = /2. Analysing the graphs
it is found that « + B > 7/2 when 8; > §; and o + vy < w/2 when 8, < §,.
Determination of the function f;. Taking n = 3 and j = 2, we obtain from Eqs (1.13) and (1.14)

i =0exp¥,(0.0). £, =Qexpl¥,(0,0)+ ¥, (c, 8)]

I)
fir = ~Qexpl, (0, a)—%z(e,awn[%J
22

I}
fr=—-Qexp[¥(0, o) + V3 (a +B, 9)](—;2—'J
22

Linearly elastic materials. Takingm = 1 and i = 1, 2, we obtain from (3.1) and (3.2)
tgAo+8, tgAp =0, tgA(B-@)+3,tgAy=0
Further, eliminating tg A from this system, we arrive at the following transcendental equation
tgAo+ 38, tgAB+9,5, tghy -5, tgAatgAPghy =0 (3.5)

which determines \ for specified values of the parameters o, B, v, 3y, 3;.

If one of the angles of the component wedges is equal to zero or one of the parameters §; is equal
to unity, a wedge of three different materials reduces to a wedge of two different materials, for which
it is known [1] that ) does not have complex values. In the case considered it is necessary to investigate
the complex roots of Eq. (3.5).

For the same angles of the component wedges, i.e. when oo = B = v, Eq. (3.5) reduces to the form

who(l+8, +8,8, -8, g Ao) =0
It can be shown that the least positive value of A will be
A =o " arctg[(1 +8, +8,82)/82]% (3.6)

Here, finally, we have the condition 3a < 2w. For identical materials, i.e. when 8, = 8, = 1, we have
A = 7/(3a).

In the case of a semi-infinite slit (« = 2m/3), when the material of the central wedge is very rigid
(8; — o), from (3.6) we obtain A\ = ¥4.

The condition A =: 1 ensures a finite stress state at the edge of the contact surfaces considered. From
(3.6) we obtain the limiting value

o, =arelgl(1+8, + 8,82]/82]%

When 8; — * we obtain a, = ©/2.

The limiting values of &. For a wedge of three different materials, whenj = 2 it follows from the first
equation of (1.12) that &€ = a + ¢ + A/2, where we have dropped the subscript 2 on £ When £ - «,
i.e. when py = —, v; = — from (3.1) we find a = A/2, and we obtain the system of equations

Fluy)=-B+A/2, F(vy)=Y

2 2 (m-112 2 2\ (m=1)12 (37)
wa (s + A" 8, v, (vy +A%)MT 2 =0

This means that for given «, B and v for the first wedge (a) the value of \ is given by the formula
for a uniform wedge (1.19), where s = a/w, while the second and third wedges are deformed together
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as a piecewise homogeneous wedge of two different materials with corresponding values of A = (B, v,
3,, m) to be found from system of equations (3.7).

When £ > « + B, i.e. when p, — %, v; — %, we arrive at a similar conclusion from system of equations
(3.1) and (3.2): the third wedge (7y) operates as a uniform wedge while the first and second together
act as a piecewise homogeneous wedge of two different materials. An analysis of the equations and
formulae obtained shows that the low-stress regions do not depend on which constituent wedge the
point lies inside (see also [9]).

Note that these investigations can also be carried out without assuming that the displacement is of
alternating sign.

I wish to thank S. M. Sarkisyan and K. S. Tadevosyan for their help with the numerical and graphical
work.
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